Vulnerabilities (CVE)

Filtered by vendor Netapp Subscribe
Filtered by product Clustered Data Ontap Antivirus Connector
Total 23 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2016-8610 7 Debian, Fujitsu, Netapp and 4 more 53 Debian Linux, M10-1, M10-1 Firmware and 50 more 2024-01-26 5.0 MEDIUM 7.5 HIGH
A denial of service flaw was found in OpenSSL 0.9.8, 1.0.1, 1.0.2 through 1.0.2h, and 1.1.0 in the way the TLS/SSL protocol defined processing of ALERT packets during a connection handshake. A remote attacker could use this flaw to make a TLS/SSL server consume an excessive amount of CPU and fail to accept connections from other clients.
CVE-2022-40303 3 Apple, Netapp, Xmlsoft 22 Ipados, Iphone Os, Macos and 19 more 2023-12-10 N/A 7.5 HIGH
An issue was discovered in libxml2 before 2.10.3. When parsing a multi-gigabyte XML document with the XML_PARSE_HUGE parser option enabled, several integer counters can overflow. This results in an attempt to access an array at a negative 2GB offset, typically leading to a segmentation fault.
CVE-2022-40304 3 Apple, Netapp, Xmlsoft 22 Ipados, Iphone Os, Macos and 19 more 2023-12-10 N/A 7.8 HIGH
An issue was discovered in libxml2 before 2.10.3. Certain invalid XML entity definitions can corrupt a hash table key, potentially leading to subsequent logic errors. In one case, a double-free can be provoked.
CVE-2022-2097 5 Debian, Fedoraproject, Netapp and 2 more 15 Debian Linux, Fedora, Active Iq Unified Manager and 12 more 2023-12-10 5.0 MEDIUM 5.3 MEDIUM
AES OCB mode for 32-bit x86 platforms using the AES-NI assembly optimised implementation will not encrypt the entirety of the data under some circumstances. This could reveal sixteen bytes of data that was preexisting in the memory that wasn't written. In the special case of "in place" encryption, sixteen bytes of the plaintext would be revealed. Since OpenSSL does not support OCB based cipher suites for TLS and DTLS, they are both unaffected. Fixed in OpenSSL 3.0.5 (Affected 3.0.0-3.0.4). Fixed in OpenSSL 1.1.1q (Affected 1.1.1-1.1.1p).
CVE-2022-1434 2 Netapp, Openssl 43 A250, A250 Firmware, A700s and 40 more 2023-12-10 4.3 MEDIUM 5.9 MEDIUM
The OpenSSL 3.0 implementation of the RC4-MD5 ciphersuite incorrectly uses the AAD data as the MAC key. This makes the MAC key trivially predictable. An attacker could exploit this issue by performing a man-in-the-middle attack to modify data being sent from one endpoint to an OpenSSL 3.0 recipient such that the modified data would still pass the MAC integrity check. Note that data sent from an OpenSSL 3.0 endpoint to a non-OpenSSL 3.0 endpoint will always be rejected by the recipient and the connection will fail at that point. Many application protocols require data to be sent from the client to the server first. Therefore, in such a case, only an OpenSSL 3.0 server would be impacted when talking to a non-OpenSSL 3.0 client. If both endpoints are OpenSSL 3.0 then the attacker could modify data being sent in both directions. In this case both clients and servers could be affected, regardless of the application protocol. Note that in the absence of an attacker this bug means that an OpenSSL 3.0 endpoint communicating with a non-OpenSSL 3.0 endpoint will fail to complete the handshake when using this ciphersuite. The confidentiality of data is not impacted by this issue, i.e. an attacker cannot decrypt data that has been encrypted using this ciphersuite - they can only modify it. In order for this attack to work both endpoints must legitimately negotiate the RC4-MD5 ciphersuite. This ciphersuite is not compiled by default in OpenSSL 3.0, and is not available within the default provider or the default ciphersuite list. This ciphersuite will never be used if TLSv1.3 has been negotiated. In order for an OpenSSL 3.0 endpoint to use this ciphersuite the following must have occurred: 1) OpenSSL must have been compiled with the (non-default) compile time option enable-weak-ssl-ciphers 2) OpenSSL must have had the legacy provider explicitly loaded (either through application code or via configuration) 3) The ciphersuite must have been explicitly added to the ciphersuite list 4) The libssl security level must have been set to 0 (default is 1) 5) A version of SSL/TLS below TLSv1.3 must have been negotiated 6) Both endpoints must negotiate the RC4-MD5 ciphersuite in preference to any others that both endpoints have in common Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2).
CVE-2022-1343 2 Netapp, Openssl 43 A250, A250 Firmware, A700s and 40 more 2023-12-10 4.3 MEDIUM 5.3 MEDIUM
The function `OCSP_basic_verify` verifies the signer certificate on an OCSP response. In the case where the (non-default) flag OCSP_NOCHECKS is used then the response will be positive (meaning a successful verification) even in the case where the response signing certificate fails to verify. It is anticipated that most users of `OCSP_basic_verify` will not use the OCSP_NOCHECKS flag. In this case the `OCSP_basic_verify` function will return a negative value (indicating a fatal error) in the case of a certificate verification failure. The normal expected return value in this case would be 0. This issue also impacts the command line OpenSSL "ocsp" application. When verifying an ocsp response with the "-no_cert_checks" option the command line application will report that the verification is successful even though it has in fact failed. In this case the incorrect successful response will also be accompanied by error messages showing the failure and contradicting the apparently successful result. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2).
CVE-2022-29824 5 Debian, Fedoraproject, Netapp and 2 more 24 Debian Linux, Fedora, Active Iq Unified Manager and 21 more 2023-12-10 4.3 MEDIUM 6.5 MEDIUM
In libxml2 before 2.9.14, several buffer handling functions in buf.c (xmlBuf*) and tree.c (xmlBuffer*) don't check for integer overflows. This can result in out-of-bounds memory writes. Exploitation requires a victim to open a crafted, multi-gigabyte XML file. Other software using libxml2's buffer functions, for example libxslt through 1.1.35, is affected as well.
CVE-2022-1292 5 Debian, Fedoraproject, Netapp and 2 more 51 Debian Linux, Fedora, A250 and 48 more 2023-12-10 10.0 HIGH 9.8 CRITICAL
The c_rehash script does not properly sanitise shell metacharacters to prevent command injection. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2). Fixed in OpenSSL 1.1.1o (Affected 1.1.1-1.1.1n). Fixed in OpenSSL 1.0.2ze (Affected 1.0.2-1.0.2zd).
CVE-2022-1473 2 Netapp, Openssl 43 A250, A250 Firmware, A700s and 40 more 2023-12-10 5.0 MEDIUM 7.5 HIGH
The OPENSSL_LH_flush() function, which empties a hash table, contains a bug that breaks reuse of the memory occuppied by the removed hash table entries. This function is used when decoding certificates or keys. If a long lived process periodically decodes certificates or keys its memory usage will expand without bounds and the process might be terminated by the operating system causing a denial of service. Also traversing the empty hash table entries will take increasingly more time. Typically such long lived processes might be TLS clients or TLS servers configured to accept client certificate authentication. The function was added in the OpenSSL 3.0 version thus older releases are not affected by the issue. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2).
CVE-2022-0778 7 Debian, Fedoraproject, Mariadb and 4 more 15 Debian Linux, Fedora, Mariadb and 12 more 2023-12-10 5.0 MEDIUM 7.5 HIGH
The BN_mod_sqrt() function, which computes a modular square root, contains a bug that can cause it to loop forever for non-prime moduli. Internally this function is used when parsing certificates that contain elliptic curve public keys in compressed form or explicit elliptic curve parameters with a base point encoded in compressed form. It is possible to trigger the infinite loop by crafting a certificate that has invalid explicit curve parameters. Since certificate parsing happens prior to verification of the certificate signature, any process that parses an externally supplied certificate may thus be subject to a denial of service attack. The infinite loop can also be reached when parsing crafted private keys as they can contain explicit elliptic curve parameters. Thus vulnerable situations include: - TLS clients consuming server certificates - TLS servers consuming client certificates - Hosting providers taking certificates or private keys from customers - Certificate authorities parsing certification requests from subscribers - Anything else which parses ASN.1 elliptic curve parameters Also any other applications that use the BN_mod_sqrt() where the attacker can control the parameter values are vulnerable to this DoS issue. In the OpenSSL 1.0.2 version the public key is not parsed during initial parsing of the certificate which makes it slightly harder to trigger the infinite loop. However any operation which requires the public key from the certificate will trigger the infinite loop. In particular the attacker can use a self-signed certificate to trigger the loop during verification of the certificate signature. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0. It was addressed in the releases of 1.1.1n and 3.0.2 on the 15th March 2022. Fixed in OpenSSL 3.0.2 (Affected 3.0.0,3.0.1). Fixed in OpenSSL 1.1.1n (Affected 1.1.1-1.1.1m). Fixed in OpenSSL 1.0.2zd (Affected 1.0.2-1.0.2zc).
CVE-2022-23308 6 Apple, Debian, Fedoraproject and 3 more 44 Ipados, Iphone Os, Mac Os X and 41 more 2023-12-10 4.3 MEDIUM 7.5 HIGH
valid.c in libxml2 before 2.9.13 has a use-after-free of ID and IDREF attributes.
CVE-2021-3541 4 Netapp, Oracle, Redhat and 1 more 27 Active Iq Unified Manager, Cloud Backup, Clustered Data Ontap and 24 more 2023-12-10 4.0 MEDIUM 6.5 MEDIUM
A flaw was found in libxml2. Exponential entity expansion attack its possible bypassing all existing protection mechanisms and leading to denial of service.
CVE-2021-3518 6 Debian, Fedoraproject, Netapp and 3 more 19 Debian Linux, Fedora, Active Iq Unified Manager and 16 more 2023-12-10 6.8 MEDIUM 8.8 HIGH
There's a flaw in libxml2 in versions before 2.9.11. An attacker who is able to submit a crafted file to be processed by an application linked with libxml2 could trigger a use-after-free. The greatest impact from this flaw is to confidentiality, integrity, and availability.
CVE-2021-3516 6 Debian, Fedoraproject, Netapp and 3 more 9 Debian Linux, Fedora, Clustered Data Ontap and 6 more 2023-12-10 6.8 MEDIUM 7.8 HIGH
There's a flaw in libxml2's xmllint in versions before 2.9.11. An attacker who is able to submit a crafted file to be processed by xmllint could trigger a use-after-free. The greatest impact of this flaw is to confidentiality, integrity, and availability.
CVE-2021-3711 5 Debian, Netapp, Openssl and 2 more 31 Debian Linux, Active Iq Unified Manager, Clustered Data Ontap and 28 more 2023-12-10 7.5 HIGH 9.8 CRITICAL
In order to decrypt SM2 encrypted data an application is expected to call the API function EVP_PKEY_decrypt(). Typically an application will call this function twice. The first time, on entry, the "out" parameter can be NULL and, on exit, the "outlen" parameter is populated with the buffer size required to hold the decrypted plaintext. The application can then allocate a sufficiently sized buffer and call EVP_PKEY_decrypt() again, but this time passing a non-NULL value for the "out" parameter. A bug in the implementation of the SM2 decryption code means that the calculation of the buffer size required to hold the plaintext returned by the first call to EVP_PKEY_decrypt() can be smaller than the actual size required by the second call. This can lead to a buffer overflow when EVP_PKEY_decrypt() is called by the application a second time with a buffer that is too small. A malicious attacker who is able present SM2 content for decryption to an application could cause attacker chosen data to overflow the buffer by up to a maximum of 62 bytes altering the contents of other data held after the buffer, possibly changing application behaviour or causing the application to crash. The location of the buffer is application dependent but is typically heap allocated. Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k).
CVE-2021-3712 7 Debian, Mcafee, Netapp and 4 more 32 Debian Linux, Epolicy Orchestrator, Clustered Data Ontap and 29 more 2023-12-10 5.8 MEDIUM 7.4 HIGH
ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure which contains a buffer holding the string data and a field holding the buffer length. This contrasts with normal C strings which are repesented as a buffer for the string data which is terminated with a NUL (0) byte. Although not a strict requirement, ASN.1 strings that are parsed using OpenSSL's own "d2i" functions (and other similar parsing functions) as well as any string whose value has been set with the ASN1_STRING_set() function will additionally NUL terminate the byte array in the ASN1_STRING structure. However, it is possible for applications to directly construct valid ASN1_STRING structures which do not NUL terminate the byte array by directly setting the "data" and "length" fields in the ASN1_STRING array. This can also happen by using the ASN1_STRING_set0() function. Numerous OpenSSL functions that print ASN.1 data have been found to assume that the ASN1_STRING byte array will be NUL terminated, even though this is not guaranteed for strings that have been directly constructed. Where an application requests an ASN.1 structure to be printed, and where that ASN.1 structure contains ASN1_STRINGs that have been directly constructed by the application without NUL terminating the "data" field, then a read buffer overrun can occur. The same thing can also occur during name constraints processing of certificates (for example if a certificate has been directly constructed by the application instead of loading it via the OpenSSL parsing functions, and the certificate contains non NUL terminated ASN1_STRING structures). It can also occur in the X509_get1_email(), X509_REQ_get1_email() and X509_get1_ocsp() functions. If a malicious actor can cause an application to directly construct an ASN1_STRING and then process it through one of the affected OpenSSL functions then this issue could be hit. This might result in a crash (causing a Denial of Service attack). It could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext). Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). Fixed in OpenSSL 1.0.2za (Affected 1.0.2-1.0.2y).
CVE-2021-3537 6 Debian, Fedoraproject, Netapp and 3 more 20 Debian Linux, Fedora, Active Iq Unified Manager and 17 more 2023-12-10 4.3 MEDIUM 5.9 MEDIUM
A vulnerability found in libxml2 in versions before 2.9.11 shows that it did not propagate errors while parsing XML mixed content, causing a NULL dereference. If an untrusted XML document was parsed in recovery mode and post-validated, the flaw could be used to crash the application. The highest threat from this vulnerability is to system availability.
CVE-2021-3517 6 Debian, Fedoraproject, Netapp and 3 more 29 Debian Linux, Fedora, Active Iq Unified Manager and 26 more 2023-12-10 7.5 HIGH 8.6 HIGH
There is a flaw in the xml entity encoding functionality of libxml2 in versions before 2.9.11. An attacker who is able to supply a crafted file to be processed by an application linked with the affected functionality of libxml2 could trigger an out-of-bounds read. The most likely impact of this flaw is to application availability, with some potential impact to confidentiality and integrity if an attacker is able to use memory information to further exploit the application.
CVE-2020-1971 8 Debian, Fedoraproject, Netapp and 5 more 46 Debian Linux, Fedora, Active Iq Unified Manager and 43 more 2023-12-10 4.3 MEDIUM 5.9 MEDIUM
The X.509 GeneralName type is a generic type for representing different types of names. One of those name types is known as EDIPartyName. OpenSSL provides a function GENERAL_NAME_cmp which compares different instances of a GENERAL_NAME to see if they are equal or not. This function behaves incorrectly when both GENERAL_NAMEs contain an EDIPARTYNAME. A NULL pointer dereference and a crash may occur leading to a possible denial of service attack. OpenSSL itself uses the GENERAL_NAME_cmp function for two purposes: 1) Comparing CRL distribution point names between an available CRL and a CRL distribution point embedded in an X509 certificate 2) When verifying that a timestamp response token signer matches the timestamp authority name (exposed via the API functions TS_RESP_verify_response and TS_RESP_verify_token) If an attacker can control both items being compared then that attacker could trigger a crash. For example if the attacker can trick a client or server into checking a malicious certificate against a malicious CRL then this may occur. Note that some applications automatically download CRLs based on a URL embedded in a certificate. This checking happens prior to the signatures on the certificate and CRL being verified. OpenSSL's s_server, s_client and verify tools have support for the "-crl_download" option which implements automatic CRL downloading and this attack has been demonstrated to work against those tools. Note that an unrelated bug means that affected versions of OpenSSL cannot parse or construct correct encodings of EDIPARTYNAME. However it is possible to construct a malformed EDIPARTYNAME that OpenSSL's parser will accept and hence trigger this attack. All OpenSSL 1.1.1 and 1.0.2 versions are affected by this issue. Other OpenSSL releases are out of support and have not been checked. Fixed in OpenSSL 1.1.1i (Affected 1.1.1-1.1.1h). Fixed in OpenSSL 1.0.2x (Affected 1.0.2-1.0.2w).
CVE-2020-24977 6 Debian, Fedoraproject, Netapp and 3 more 19 Debian Linux, Fedora, Active Iq Unified Manager and 16 more 2023-12-10 6.4 MEDIUM 6.5 MEDIUM
GNOME project libxml2 v2.9.10 has a global buffer over-read vulnerability in xmlEncodeEntitiesInternal at libxml2/entities.c. The issue has been fixed in commit 50f06b3e.