Vulnerabilities (CVE)

Filtered by vendor Nodejs Subscribe
Total 161 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2019-9517 12 Apache, Apple, Canonical and 9 more 25 Http Server, Traffic Server, Mac Os X and 22 more 2023-12-10 7.8 HIGH 7.5 HIGH
Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both.
CVE-2019-5739 2 Nodejs, Opensuse 2 Node.js, Leap 2023-12-10 5.0 MEDIUM 7.5 HIGH
Keep-alive HTTP and HTTPS connections can remain open and inactive for up to 2 minutes in Node.js 6.16.0 and earlier. Node.js 8.0.0 introduced a dedicated server.keepAliveTimeout which defaults to 5 seconds. The behavior in Node.js 6.16.0 and earlier is a potential Denial of Service (DoS) attack vector. Node.js 6.17.0 introduces server.keepAliveTimeout and the 5-second default.
CVE-2019-9512 5 Apache, Apple, Canonical and 2 more 6 Traffic Server, Mac Os X, Swiftnio and 3 more 2023-12-10 7.8 HIGH 7.5 HIGH
Some HTTP/2 implementations are vulnerable to ping floods, potentially leading to a denial of service. The attacker sends continual pings to an HTTP/2 peer, causing the peer to build an internal queue of responses. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-9518 11 Apache, Apple, Canonical and 8 more 20 Traffic Server, Mac Os X, Swiftnio and 17 more 2023-12-10 7.8 HIGH 7.5 HIGH
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU.
CVE-2019-9513 12 Apache, Apple, Canonical and 9 more 22 Traffic Server, Mac Os X, Swiftnio and 19 more 2023-12-10 7.8 HIGH 7.5 HIGH
Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU.
CVE-2019-9514 13 Apache, Apple, Canonical and 10 more 30 Traffic Server, Mac Os X, Swiftnio and 27 more 2023-12-10 7.8 HIGH 7.5 HIGH
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both.
CVE-2018-12121 2 Nodejs, Redhat 8 Node.js, Enterprise Linux, Enterprise Linux Desktop and 5 more 2023-12-10 5.0 MEDIUM 7.5 HIGH
Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Denial of Service with large HTTP headers: By using a combination of many requests with maximum sized headers (almost 80 KB per connection), and carefully timed completion of the headers, it is possible to cause the HTTP server to abort from heap allocation failure. Attack potential is mitigated by the use of a load balancer or other proxy layer.
CVE-2018-5407 7 Canonical, Debian, Nodejs and 4 more 20 Ubuntu Linux, Debian Linux, Node.js and 17 more 2023-12-10 1.9 LOW 4.7 MEDIUM
Simultaneous Multi-threading (SMT) in processors can enable local users to exploit software vulnerable to timing attacks via a side-channel timing attack on 'port contention'.
CVE-2018-12123 1 Nodejs 1 Node.js 2023-12-10 4.3 MEDIUM 4.3 MEDIUM
Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Hostname spoofing in URL parser for javascript protocol: If a Node.js application is using url.parse() to determine the URL hostname, that hostname can be spoofed by using a mixed case "javascript:" (e.g. "javAscript:") protocol (other protocols are not affected). If security decisions are made about the URL based on the hostname, they may be incorrect.
CVE-2018-7166 1 Nodejs 1 Node.js 2023-12-10 5.0 MEDIUM 7.5 HIGH
In all versions of Node.js 10 prior to 10.9.0, an argument processing flaw can cause `Buffer.alloc()` to return uninitialized memory. This method is intended to be safe and only return initialized, or cleared, memory. The third argument specifying `encoding` can be passed as a number, this is misinterpreted by `Buffer's` internal "fill" method as the `start` to a fill operation. This flaw may be abused where `Buffer.alloc()` arguments are derived from user input to return uncleared memory blocks that may contain sensitive information.
CVE-2019-1559 13 Canonical, Debian, F5 and 10 more 90 Ubuntu Linux, Debian Linux, Big-ip Access Policy Manager and 87 more 2023-12-10 4.3 MEDIUM 5.9 MEDIUM
If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable "non-stitched" ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). Fixed in OpenSSL 1.0.2r (Affected 1.0.2-1.0.2q).
CVE-2018-12120 1 Nodejs 1 Node.js 2023-12-10 6.8 MEDIUM 8.1 HIGH
Node.js: All versions prior to Node.js 6.15.0: Debugger port 5858 listens on any interface by default: When the debugger is enabled with `node --debug` or `node debug`, it listens to port 5858 on all interfaces by default. This may allow remote computers to attach to the debug port and evaluate arbitrary JavaScript. The default interface is now localhost. It has always been possible to start the debugger on a specific interface, such as `node --debug=localhost`. The debugger was removed in Node.js 8 and replaced with the inspector, so no versions from 8 and later are vulnerable.
CVE-2018-12122 2 Nodejs, Suse 4 Node.js, Suse Enterprise Storage, Suse Linux Enterprise Server and 1 more 2023-12-10 5.0 MEDIUM 7.5 HIGH
Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Slowloris HTTP Denial of Service: An attacker can cause a Denial of Service (DoS) by sending headers very slowly keeping HTTP or HTTPS connections and associated resources alive for a long period of time.
CVE-2018-0735 6 Canonical, Debian, Netapp and 3 more 23 Ubuntu Linux, Debian Linux, Cloud Backup and 20 more 2023-12-10 4.3 MEDIUM 5.9 MEDIUM
The OpenSSL ECDSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.1.1a (Affected 1.1.1).
CVE-2018-12116 2 Nodejs, Suse 4 Node.js, Suse Enterprise Storage, Suse Linux Enterprise Server and 1 more 2023-12-10 5.0 MEDIUM 7.5 HIGH
Node.js: All versions prior to Node.js 6.15.0 and 8.14.0: HTTP request splitting: If Node.js can be convinced to use unsanitized user-provided Unicode data for the `path` option of an HTTP request, then data can be provided which will trigger a second, unexpected, and user-defined HTTP request to made to the same server.
CVE-2018-12115 2 Nodejs, Redhat 2 Node.js, Openshift Container Platform 2023-12-10 5.0 MEDIUM 7.5 HIGH
In all versions of Node.js prior to 6.14.4, 8.11.4 and 10.9.0 when used with UCS-2 encoding (recognized by Node.js under the names `'ucs2'`, `'ucs-2'`, `'utf16le'` and `'utf-16le'`), `Buffer#write()` can be abused to write outside of the bounds of a single `Buffer`. Writes that start from the second-to-last position of a buffer cause a miscalculation of the maximum length of the input bytes to be written.
CVE-2018-0734 6 Canonical, Debian, Netapp and 3 more 20 Ubuntu Linux, Debian Linux, Cloud Backup and 17 more 2023-12-10 4.3 MEDIUM 5.9 MEDIUM
The OpenSSL DSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.1a (Affected 1.1.1). Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.0.2q (Affected 1.0.2-1.0.2p).
CVE-2018-7159 1 Nodejs 1 Node.js 2023-12-10 5.0 MEDIUM 5.3 MEDIUM
The HTTP parser in all current versions of Node.js ignores spaces in the `Content-Length` header, allowing input such as `Content-Length: 1 2` to be interpreted as having a value of `12`. The HTTP specification does not allow for spaces in the `Content-Length` value and the Node.js HTTP parser has been brought into line on this particular difference. The security risk of this flaw to Node.js users is considered to be VERY LOW as it is difficult, and may be impossible, to craft an attack that makes use of this flaw in a way that could not already be achieved by supplying an incorrect value for `Content-Length`. Vulnerabilities may exist in user-code that make incorrect assumptions about the potential accuracy of this value compared to the actual length of the data supplied. Node.js users crafting lower-level HTTP utilities are advised to re-check the length of any input supplied after parsing is complete.
CVE-2017-16024 2 Nodejs, Sync-exec Project 2 Node.js, Sync-exec 2023-12-10 4.0 MEDIUM 6.5 MEDIUM
The sync-exec module is used to simulate child_process.execSync in node versions <0.11.9. Sync-exec uses tmp directories as a buffer before returning values. Other users on the server have read access to the tmp directory, possibly allowing an attacker on the server to obtain confidential information from the buffer/tmp file, while it exists.
CVE-2018-7161 1 Nodejs 1 Node.js 2023-12-10 7.8 HIGH 7.5 HIGH
All versions of Node.js 8.x, 9.x, and 10.x are vulnerable and the severity is HIGH. An attacker can cause a denial of service (DoS) by causing a node server providing an http2 server to crash. This can be accomplished by interacting with the http2 server in a manner that triggers a cleanup bug where objects are used in native code after they are no longer available. This has been addressed by updating the http2 implementation.